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SUMMARY

Phillips curves are central to discussions of inflation dynamics and monetary policy. The hybrid new
Keynesian Phillips curve (NKPC) describes how past inflation, expected future inflation, and a measure of real
aggregate demand drive the current inflation rate. This paper studies the (potential) weak identification of the
NKPC under Generalized Method of Moments and traces this syndrome to a lack of higher-order dynamics
in exogenous variables. We employ analytic methods to understand the economics of the NKPC identification
problem in the canonical three-equation, new Keynesian model. We revisit the empirical evidence for the
USA, the UK, and Canada by constructing tests and confidence intervals based on the Anderson and Rubin
(1949) statistic, which is robust to weak identification. We also apply the Guggenberger and Smith (2008)
LM test to the underlying NKPC pricing parameters. Both tests yield little evidence of forward-looking
inflation dynamics. Copyright © 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Recent years have witnessed a boom in work on the Phillips curve. For a student of monetary
policy and the business cycle steeped in dynamic general equilibrium methods, the revival of
Phillips curve research might come as a shock. The shock might be mitigated because the Phillips
curve revival features debates on the role of backward- and forward-looking expectations for
inflation, on which measure of real aggregate demand most directly influences inflation, on the
response of monetary policy to various disturbances, on the costs of disinflation, and on optimal
monetary policy. These debates often are framed by the new Keynesian Phillips curve (NKPC)
because it appears to provide a tent under which many views of inflation dynamics can exist.
However, whether to be inside or outside the Phillips curve revival tent depends on the NKPC
being a persuasive description of inflation dynamics.

Variations on the NKPC are just about limitless. The canonical NKPC is driven either by
current real marginal cost or today’s output gap and is forward-looking in the current expectation
of tomorrow’s inflation. Gali and Gertler (1999) added lagged inflation to create a ‘hybrid NKPC’,
which they used to address aspects of the debate among Phillips curve revivalists. Specification
of the NKPC has important implications for monetary policy, and in particular for how central
banks should react to real events while maintaining inflation targets. Although contributions to
this research are too numerous to list, besides Gali and Gertler (1999), Fuhrer and Moore (1995),
Roberts (1995), and Sbordone (2002) made important empirical contributions. Theory and evidence
about the NKPC also are reviewed by Woodford (2003).
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The hybrid NKPC is a second-order, linear, expectational difference equation. Hansen and
Sargent (1980) and Sargent (1987) studied the dynamic and time series properties of this general
class of stochastic models. Much empirical work on the NKPC estimates it using instrumental
variables (IV) methods, as Gali and Gertler (1999) did. Generally, NKPC parameters prove difficult
to pin down even with large instrument sets. This suggests weak identification. Other symptoms
of this syndrome include instability of estimates across instrument sets, estimates which may
approach those from ordinary least-squares and hence be inconsistent, and Wald tests with size
distortions. The goals of this paper are (a) to study the economics underlying weak identification,
with a view to drawing lessons and recommendations for applied work, and (b) to provide new
tests of the NKPC that are robust to weak identification.

Section 2 provides background on the NKPC and begins our study of the economics of weak
identification. It shows that predictability of future marginal cost or the output gap beyond that
provided by current marginal cost or current or lagged inflation is necessary for identification.
This predictability can be provided by higher-order dynamics in marginal cost.

Section 3 briefly considers a variety of approaches that have been proposed for dealing with
the identification problem, while using standard tools of Generalized Method of Moments (GMM)
estimation and testing. For example, some researchers have suggested calibrating the discount
factor in the Calvo pricing model, focusing on the purely forward-looking NKPC, or indexing
with lagged inflation.

Section 4 details the GMM identification problem when the hybrid NKPC is set in a typical,
three-equation, new Keynesian model. We show that the hybrid NKPC cannot be identified
under GMM estimation in this environment. Even persistent shocks or interest-rate smoothing
in monetary policy, which are standard sources of additional dynamics, do not provide valid
instruments. Thus studying the NKPC within the three-equation, new Keynesian model does not
suggest additional instruments that could aid identification.

Given these analytical results, Section 5 provides tests of the NKPC that are robust to weak
identification. We estimate the hybrid NKPC for the USA, UK, and Canada, using a range of
instruments. We first use the Anderson and Rubin (1949) statistic to test the hybrid NKPC. This
test is robust to weak or omitted instruments. Its application yields little evidence of forward-
looking inflation dynamics for the USA and UK, but cannot reject the forward-looking NKPC
for Canada. We also apply the methods of Guggenberger and Smith (2008), which allow more
powerful tests—again robust to weak identification—of the Calvo pricing parameters that underlie
the NKPC. These methods too yield little evidence in support of the hybrid NKPC for the USA,
UK, and Canada.

2. BACKGROUND

A variety of pricing environments give rise to a hybrid NKPC that describes inflation, m; :
T = YrE T + Vo1 + A (1)

where we use x; to denote real aggregate demand (either real marginal cost or an output gap). The
studies by Roberts (1997), Fuhrer and Moore (1995), and Gali and Gertler (1999) contain examples
of these environments. The underlying pricing behavior can range from smooth adjustment with
quadratic costs to a variation of Calvo’s contract model (with or without firm-specific capital) in
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which some price-setters are backward-looking. The hybrid NKPC (1) also may be consistent with
the dynamic indexing model studied by Woodford (2003) and Christiano et al. (2005), assuming
it is written in the quasi-difference or change in inflation rather than the level.

An influential example of an environment underlying the NKPC is Calvo’s pricing model. There
the discount factor is §. A fraction 6 of firms are not allowed to change prices each period. In
Gali and Gertler’s hybrid version of the model, meanwhile, a fraction w are able to change prices
but choose not to. Define ¢ = 6 4+ w[l — 6(1 — B)]. Then the mapping between these structural
parameters and the reduced-form parameters is

, = d—o)d—6)d - o) @)

_p e
3 ¢

YF= "W
f o

This mapping is unique when the structural parameters are positive fractions.

It is often convenient to work with the general problem of identifying the parameters yy, v,
and A. In this case the environment is linear, so there is no distinction between local and
global identification. Throughout the paper we also assume (with one exception) that the roots of
relevant difference equations imply stability and uniqueness of solutions, and that the difference
equation (1) follows from a pricing model—in which all three parameters are positive—and not
an observationally equivalent environment, as outlined by Beyer and Farmer (2004).

The hybrid NKPC (1) is a linear, second-order, stochastic difference equation. Our study draws
on tools for formulating these problems under rational expectations developed by Hansen and
Sargent (1980) and Sargent (1987). We also draw on studies of estimation in the linear-quadratic
model by Gregory ef al. (1993), West and Wilcox (1994), and Fuhrer et al. (1995).

GMM estimation of the hybrid NKPC (1) uses sample versions of

Elm; — yrmi1 — vomi—1 — Axlz] = 0, 3)

and instruments z;. Given moment conditions (3), a necessary condition for identification of
{¥p, vy, A} is that there are as many valid instruments as parameters (or variables that explain
inflation in this linear model). A test based on over-identification requires at least four instruments
or four such pieces of information. The instruments must be uncorrelated with the GMM residuals,
which are essentially forecast errors. This is the order condition. Of course, being dated t — 1 or
earlier is not sufficient for an instrument to be valid: it must possess incremental information
about 7,41. The matrix of cross-products of the instruments and the right-hand-side variables in
the hybrid NKPC cannot be singular. This is the rank or ‘relevance’ condition of IV estimation.
We have omitted constant terms, as if the data have been demeaned. Of course, if in applications
a constant term is included in the NKPC, a vector of ones can be used as an instrument while
adding no net identifying information.

Identification obviously requires that one can predict m,; with at least one variable other
than m;, m,—, and x,. This is a stringent requirement. Stock and Watson (1999) reported that few
variables have power to forecast postwar US inflation once lagged inflation and the unemployment
rate are accounted for.

But the economic structure can be used to give an alternate perspective on the potential
identification problem. The second-order difference equation (1) can be rewritten in present-value
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form using the methods of Sargent (1987):

PN B
T = 017— — — | E 4
t 17Tt 1+(82Vf>k2:;<52) tXt+k 4
where 8; and &, are the stable and unstable roots, respectively, of the characteristic equation:
1 L
Lty — P
14i Vr

We assume that {x,} is of exponential order less than §, so that the infinite sum in (4) is finite,
and that the roots yield a unique solution to the difference equation.
Leading the present-value version (4) forward and forecasting gives E,m; 4 as

A\ /1)
Emi =81 + <—> Z (5_> Exiy1vk (5)
2

RV e

This restatement of E,m,; shows that identifying y, requires that there be variation in the forecast
of the stream {x;y, X;4+2, X/+3, - - -} that is unrelated to variation in x, and m,_;. In other words,
higher-order dynamics are needed for identification.

Recall that when a present-value (5) is projected on current information the number of lags is
one less than the lag length in the underlying forecasting model. Thus, for example, if x; follows
an autonomous, Jth-order autoregression, then J > 2 is necessary for identification and J > 3 is
necessary for over-identification with GMM. Marginal cost x;, must be predictable with at least
one variable other than x,_; and m,_;. In particular, if x, follows a first-order Markov process
then the parameters of the second-order difference equation in inflation (1) cannot be identified
by GMM. Pesaran (1987, Propositions 6.1 and 6.2) derived similar results. He observed that
identifying information is available when the lag length in the process for x; is longer than that in
the difference equation.

Including the lagged, endogenous variable in predicting x may partly capture the additional
information used by price-setters in forecasting. Campbell and Shiller (1987) and Boileau and
Normandin (2002) developed this approach. Suppose then that the investigator predicts x with
once-lagged or twice-lagged inflation in the hope of providing over-identification. Again, the lag
length in the projection of the present value on current information is one less than the lag length
in the forecasting equation. Recall that m,_; is already in the estimating equation, so for m,_; to
be available as an instrument requires that x, be predictable with m;_3.

A number of researchers have used only lagged instruments in estimating (3). For example,
Gali and Gertler (1999) used up to four lags of six instruments. Using lagged instruments moves
the forecasting platform back in time, but does not alter the result that higher-order dynamics or
additional, valid variables other than x and 7 are needed for identification. For future reference,
denote the instrument set that excludes any current variables by z;_i.

Ma (2002) was the first to raise the issue of the potential weak identification of the NKPC with
GMM. He studied the US Phillips curve using the S-sets derived by Stock and Wright (2000).
Mavroeidis (2004) provided a good discussion of the econometrics of weak identification and
traced it to the properties of exogenous variables. He suggested using the concentration parameter
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as a measure of weakness of identification, but did not provide formal tests. Mavroeidis (2005)
showed by simulation that standard GMM tools may be unreliable when applied to the NKPC.
Dufour et al. (2006) simultaneously with this paper proposed and applied identification-robust
tests based on Anderson and Rubin (1949) to US NKPCs measured with an output gap.

Our focus on dynamics excludes other potential sources of identification, such as structural
breaks, time-varying coefficients, stochastic volatility, or the use of survey data on inflation
expectations. We also do not focus on the system estimator, where additional identifying
information is available from cross-equation and covariance restrictions. Systems estimation has
been studied by, among others, Fuhrer and Moore (1995), Sbordone (2002, 2005), Kurmann (2005),
Lindé (2005), Jondeau and Le Bihan (2003), and Fuhrer and Olivei (2004).

Our main contributions are twofold: (a) we trace the potential weak identification of the NKPC to
the economic properties of the underlying new Keynesian model, and (b) we provide tests—robust
to weak identification—of the forward-looking component of the NKPC for the USA, UK, and
Canada both for the reduced-form parameter y, and for the underlying parameters of the hybrid
NKPC.

3. GMM APPROACHES

The purpose of this section is to review several plausible suggestions for avoiding weak
identification or non-identification and for transforming the moment condition or instruments
while continuing to apply GMM, and to see whether they provide solutions. Several methods
are practical, but they generally rely on specific, extra information or preclude testing the hybrid
NKPC. For ease of reading, proofs of propositions are collected in Appendix A.

First, in some circumstances, the investigator may know the value of A, either from theory or
from some auxiliary statistical work. For example, if x, ~ I(1) then x, and &, will be cointegrated
with parameter A, which could be estimated from a static regression, as originally proposed
by Engle and Granger (1987). This common, stochastic trend restriction can potentially aid
identification of the remaining parameters, y; and y;.

Proposition 1 If a consistent estimate A is available, then an additional instrument is available
in z, but not in z,_;.

The logic behind this proposition is simply that if A is known then x, becomes available as an
instrument to help forecast 77,, 1. But with a lagged instrument set z,_1, three variables in the NKPC
(3) remain to be forecast, {m,1, 7/, X;}, even given an estimate . The last part of Proposition 1
is a generalization of an example found in Gregory et al. (1993), who modelled x; as a random
walk. According to Gregory et al., lagged instruments could not identify the parameters of the
difference equation without higher-order dynamics in the x-process. Proposition 1 also is relevant
to price-setting rules that are written in terms of the level of prices, rather than the inflation rate,

because the price level is more likely to be nonstationary yet cointegrated with the fundamental.

Proposition 2 Restricting y, =0, or y, =1 — yy, or calibrating a discount factor 8 in an
underlying pricing model may aid identification.
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First, if the investigator imposes y;, = 0, so that the NKPC is purely forward-looking then the
variable m,_; is now free to play the role of an instrument for 7, ;. Mavroeidis (2004, 2005)
provided a detailed discussion of this case.

Second, a number of authors suggest imposing the restriction y + y, = 1. This restriction
means that there is no long-run trade-off between inflation and real activity in levels. Lindé (2005)
and Rudd and Whelan (2006) studied this restricted model with systems estimators. Given this
restriction, the NKPC becomes

Am, = 7~/fEtA7Tt+1 + Ax; (6)

where yr = (1 —y)/yp and x = A/vp. Christiano et al. (2005) and Woodford (2003) showed
that this revised Phillips curve (6) is implied by a staggered pricing mechanism in which firms
cannot commit to a new price but instead set their price at date r by adding lagged, aggregate
inflation to fully index their previous period’s price. The restriction also holds approximately in
the Gali—Gertler model for plausible values of 8. The rewriting (6) again shows that 77;_; again is
now eligible as an instrument. (As an aside, we note that one might well find yy > 1 in estimating
the transformed Phillips curve equation (6), for the formula for 7, shows that such values would
be implied by any y, < 0.5.)

Third, the NKPC sometimes is viewed as stemming from an underlying Calvo pricing model,
with three deep parameters: §, a discount factor, the fraction of firms able to change price, and
the fraction able to change price that do not. Pre-setting 8 amounts to setting y, conditional on
yp and A, and so it may allow identification.

An important corollary of Proposition 2, however, is that naturally none of the restrictions in
Proposition 2 can be tested using over-identifying information if the restriction is necessary for
identification so that the two remaining parameters are just identified. For example, an investigator
who achieved identification by imposing the first restriction, y, = 0, could not test the hybrid
NKPC against the purely forward-looking one. That is because the unrestricted, hybrid model
then would not be identified.

As an interesting way to provide evidence on the hybrid NKPC, Rudd and Whelan (2005), Gali
et al. (2005), and Guay et al. (2003) solved the hybrid NKPC difference equation forward, but
truncated after K leads. Rudd and Whelan (2005) motivated instrumenting the present discounted
value of x instead of m,y; by the possibility of specification error. This led them to estimate by
instrumental variables

K
A
E|\m —6ym—) — —— 85%x klze—1 (7)
t t 52Vf; 2 Xi+k <t

Proposition 3 Solving the NKPC forward and truncating provides no additional information to
aid identification (or improve efficiency).

This proposition simply reflects the fact that the transformation or forward solution in the
estimating equation still involves the three parameters {yy, y», A} without affecting the number of
relevant instruments.

In GMM estimation it is sometimes useful to use lagged residuals as instruments. For example,
they have helpful scaling properties, for they are of the same order of magnitude as the residuals
that are being minimized in estimation. The next result shows that this device is unavailable for
the NKPC.
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Proposition 4 Whether z;, or z,_; is adopted, the GMM residual is a MA(1) process, so any
instrument set must exclude once-lagged GMM residuals.

The GMM residual includes a two-step forecast error, which naturally follows a first-order
moving average spanning periods ¢+ 1 and ¢. Thus the residual is correlated with the lagged
residual, which violates the orthogonality condition. However, this moving average can be
accounted for in constructing the weighting matrix in GMM estimation.

In summary, several methods suggested to ward off weak identification are practical, but they
generally rule out testing of the hybrid NKPC. Thus identification and testing requires higher-order
dynamics or additional variables to predict inflation. A natural question concerns the economic
interpretation of these features. The next section looks at their availability in a new Keynesian
economic model.

4. ECONOMIC SOURCES OF WEAK IDENTIFICATION
Up to this point, we have noted that identifying the hybrid NKPC depends on the multi-step
predictability of the x-process. However, real marginal cost or the output gap is endogenous in a
dynamic, stochastic, general-equilibrium model. We study identification in a more complete model
in this section. It seems natural to work with a typical, new Keynesian, trinity (i.e., three-equation)
model (NKTM) consisting of an NKPC, a linearized, dynamic IS schedule, and a Taylor rule. Let
y be the output gap and R be the interest rate set by the central bank (the nominal federal funds
rate in the USA). The system is
T =VrE T + et + A+ e
Vi = BrEiyip1 + Bpyi—1 — BrRR: — Eimtiy1) + €y (8)
R = wn7t: + wyy; + &g
Our focus in this paper is on estimating the hybrid NKPC by replacing E,m, ;. The NKTM
(8) automatically yields such forecasts, which we next derive. Using the policy rule to replace the
interest rate in the equations for inflation and the output gap gives
T =VrE T + vet-1 + AN+ e 9)
Vi = Br@E: Y1 + BROE 711 + Bo@yi1 — Prox @7 + @€y — Brer:)

where
¢ = (1+ pro,)™" (10)

Stack the endogenous variables as w, = (; y;)’, and the corresponding, composite shocks as
& = (ex @(ey — Prer:))'. This allows us to write the system (9) as

U — flw = cEwi1 +dwi—1 + &, (11)
where the 2 x 2 matrices of the system of second-order difference equations (11) are
(f o) o= )
Bre  Bre 0 By
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and f has zeros on the diagonal:

0 A
f= (—ﬁRwﬂ 0)'

The bivariate system (11) can be rearranged this way:
CEwipr — [ — flw, +dw, = —¢,. (12)

We assume uniqueness and stability, and specifically that w, > 1. This restriction on monetary
policy satisfies the well-known Taylor principle. Under this restriction, only fundamental shocks,
&, drive inflation and the output gap. The unique solution takes a first-order form:

w; = aw;_1 + bsg; (13)

where a and b are 2 x 2 matrices. The solution (13) is the equilibrium vector process of the new
Keynesian economy (8). Solving for a and b by guess-and-verify methods leads to a system of
polynomials in the lag operator. Factoring a multivariate spectral density matrix usually requires
numerical methods; a and b cannot be found analytically in general. For discussion and examples,
see Hansen and Sargent (1981), Zadrozny (1998), and Sayed and Kailath (2001). Nonetheless, the
form of the solution (13) tells us much about the necessary conditions for identification.

Proposition 5 In the new Keynesian, three-equation model with unpredictable shocks, the hybrid
NKPC cannot be identified by single-equation GMM.

The result follows from the first-order Markov nature of w,. With y, and m,_ already entering the
hybrid NKPC, there are no further variables available to instrument for 7, in GMM estimation.

There will be higher-order dynamics in the univariate time series process for y, implied by the
NKTM. Marginalizing the VAR gives

oo
Yo =anyi-1 +anan y_al v (14)
=0

But there is no additional information in the lagged values of y beyond that contained in ;.
Thus, finding higher-order dynamics in y is necessary, but not sufficient for identification in GMM.
Although the NKTM can produce higher-order output dynamics, as in (14), these do not yield
relevant instruments. Lagged inflation already enters the hybrid NKPC. Proposition 5 implies that
identifying the NKPC must rely on cross-equation restrictions in this system, as adopted by Lindé
(2005), for example.

Persistent shocks are a potential source of identifying information. For identification of the
NKPC, we require three instruments that jointly provide information on each of the regressors
Em 41, m—1, and y, and are uncorrelated with the residual &,,. Combining persistence in shocks
with the endogenous persistence in the NKTM yields higher-order dynamics. But it turns out that
these do not provide identifying information.
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Proposition 6 In the NKTM (8) with persistent shocks the hybrid NKPC is not identified under
GMM.

The shocks are unobservable so their persistence adds persistence to the endogenous variables.
For example, adding one or more AR(1) shocks makes the endogenous variables follow an
AR(2) system. These lagged, endogenous variables may help predict 7, , but they are not valid
instruments because they are correlated with the GMM residual &,,. The proof shows that this
endogeneity arises whether the persistence originates in the NKPC or in the other equations of the
NKTM. Lagging the observable variables enough to make them uncorrelated with &, also makes
them unrelated to 7,1 ;. Section 2 showed that higher-order dynamics can provide identification if
they are exogenous and observable. But the NKTM creates endogenous dynamics.

Lagged variables are not valid as instruments when there are persistent shocks, because the
shocks also are cross-correlated. Calibration of the NKTM provides a numerical example. Let
vr =03,y =0.6,A=0.025, 8, =0.2, 8, =0.6, Bg = 0.5, v, = 1.5, and w, = 0.25. Suppose
that the two shocks in &, follow uncorrelated, first-order autoregressions, with coefficients 0.95.
Under this calibration, numerical guess-and-verify gives

0.7727  0.0254
—0.1970 0.5979

and
b (2.1089 0.0964)

0.5831 1.4281

This numerical example shows that a reasonable calibration of the NKTM gives an equilibrium
law of motion (13) with correlated, reduced-form shocks even when the NKTM structural shocks
are uncorrelated.

What if y, = 0 so that we have the purely forward-looking NKPC? In that case a persistent
shock makes 7,1 help predict 7,1, as Campbell and Shiller (1987) and Boileau and Normandin
(2002) noted. With m;_; excluded from the NKPC the lagged inflation rate now is available as
an instrument. However, it also is correlated with the residual €, when the shocks are persistent,
and so is invalid.

Shock persistence translates into serial correlation in inflation and the output gap. This finding
may help to explain the long lags in estimated NKTM inflation and output gap equations reported,
for example, by Lindé (2005) and Jondeau and Le Bihan (2003). Likewise, Ireland (2004) found
that an autocorrelated cost shock in the NKPC was necessary for empirical success of the NKTM.
But systems estimators that exploit cross-equation restrictions are necessary to identify the NKPC,
at least in the NKTM environment.

Persistence in policy interest rates often is attributed not to persistence in the shock but to a
lagged, dependent variable in the policy rule, i.e., to interest-rate smoothing. Suppose the policy
rule is

R = (1 — v)(wxm; + @y y;) + VR 1 + &g (15)

with 0 < v < 1. This is another standard modification to the NKTM. We next show that, once
again, this feature provides dynamics but does not allow the investigator to identify the NKPC
using GMM.
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Proposition 7 In the NKTM (8) with interest-rate smoothing in monetary policy the hybrid
NKPC is not identified under GMM.

The logic behind this result is simple. The policy rule (15) is Markov so the entire NKTM
remains Markov. Thus only the current interest rate, R, is newly available as an instrument with
which to forecast ;. But current inflation, 7r;, enters the policy rule, so R, is correlated with &,
and so is invalid as an instrument.

There is an analogous, negative result on identification when the NKTM (8) possesses multiple
equilibria. Lubik and Schorfheide (2004) study a NKTM that associates the indeterminacy with
passive monetary policy, @, < 1, and sunspot (i.e., extrinsic) shocks. Under w, < 1, they show
that the rational expectations forecast of m, and y, is a first-order VAR with forecast innovations
a function of the fundamental shocks &; and the rational expectation forecast errors, ¢;:

U — tL1Ewi11 = Te8 + Teoy (16)

where ¢,11 = [Vir1 — E;yiy1 71 — E;m11) and the T matrices are functions of the parameters of
the NKTM. Given the linear NKTM (8), this class of passive monetary policies also permits ¢; to
be a linear function of &, and a vector of sunspot shocks, ;. It follows from these facts—E,;w; is
the VAR(1) (16) and ¢, depends on ¢, besides fundamental shocks—that w, becomes a (restricted)
bivariate ARMA process rather than a pure bivariate autoregression:

I — pLlw; = ksl — uOy L]0 + oyl — 1Oy L1y, a7

where p denotes the stable eigenvalue of (16) and the « and 6 matrices are functions of the
NKTM parameters. Note that the first-order moving average of the bivariate ARMA process
(17) is a function of the fundamental and sunspot shocks. The econometrician focuses on the
sunspot to connect the observed data to one of the multiple equilibria. This motivates Lubik and
Schorfheide to argue that the sunspot shock interpretation of indeterminacy (created by w, < 1)
explains serially correlated inflation and output gap data.

Proposition 8 When the NKTM (8) possesses multiple equilibria and the rational expectations
forecast errors are a (linear) function of the fundamental and extrinsic shocks, the hybrid NKPC
is not identified under GMM.

The key to Proposition 8 is that the lack of restrictions on the rational expectations forecast
errors under indeterminacy means that there is no additional identification information. Although
fundamental and sunspot shocks are news for an econometrician attempting to estimate the NKTM
(8), these shocks do not help forecast 7r,, 1. However, this approach to identifying the NKPC within
a larger model imposes persistence and cross-equation restrictions on the forecast innovation of the
bivariate ARMA process (17) of y, and m;, which can yield additional information for identification
in the system.

This section has focused on potential for the NKTM to allow estimation of the hybrid NKPC
when using instrumental variables. The main finding is that the NKPC cannot be identified by
GMM in the NKTM environment, even if there are persistent shocks, interest-rate smoothing, or
sunspot equilibria.
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5. REVISITING THE EVIDENCE: ROBUST TESTS

Finding that the NKPC is not identified under GMM in the new Keynesian model leads us to
consider tests that preserve the limited information features of GMM but are robust to weak
identification. In this section we first estimate hybrid NKPCs for the USA, UK, and Canada.
Using lagged values of inflation and marginal cost as instruments does not lead to singularity (as
the NKTM would predict) but does suggest that identification is weak. We then draw inferences
without using a system by using statistics from Anderson and Rubin (1949) plus some recent
developments. The data consists of GDP inflation and measures of real marginal cost. Appendix
B describes the data sources, while Figure 1 provides time-series plots for the three countries.

5.1. Statistics

First, we study the time-series properties of x;. We estimate univariate autoregressions for x;, and
test the lag length from J =1 to J = 6 lags using a likelihood ratio statistic, the AIC, and the
SIC. Recall from Section 2 that—if there are no instruments other than lags of x—then J > 2
is necessary for identification in GMM. We next include lagged values of inflation and report the
results of a pre-test of the null hypothesis that {m,} does not Granger-cause {x;}. Section 2 also
noted that finding a role for lagged inflation in forecasting x suggests that further instruments may
be available. These could include lags of inflation beyond the first two or other variables that lead
to Granger-causality because of the superior information of price-setters.
Second, our main interest is in instrumental-variables estimation, so we estimate

Elm, — yrmi1r — vomi—1 — Ax|z] =0 (18)

by GMM and report point estimates and standard errors as well as the J-test statistic of over-
identifying restrictions and its p-value. Following Proposition 4, GMM estimators will allow for
a first-order moving average in the GMM residual. The weighting matrix will be the continuous-
updating version introduced by Hansen et al. (1996), which has good finite-sample properties and
is invariant to the normalization of the hybrid NKPC (1). We also include results with z,_j, to
allow for the possibility that z, is correlated with the GMM residual due to time aggregation or
measurement error. Of course, these standard estimates and inferences may be suspect due to weak
identification but the idea is to show how conclusions may differ between these methods and those
that are robust to weak identification.

Third, we calculate Anderson—Rubin (1949) statistics to test several hypotheses, and find the
implied confidence intervals. Excellent surveys of inference under weak identification are provided
by Dufour (2003) and Andrews and Stock (2007). For the just-identified case, the Anderson—Rubin
test is preferred, according to these authors. The statistics from GMM estimation (18) depend on
nuisance parameters under weak identification. In contrast, the AR statistics are pivotal in finite
samples. To test Hy: ¥y = yyo one projects as follows:

T — VFoT+1 = Qo + 01771 + 00Xy + a3y (19)

with auxiliary variables u,, then constructs the Anderson—Rubin (AR) F-statistic for Hj,: a3 = 0.
The idea is that there should be no further role for u, at the true value for y;. In our case, yy is
a scalar. This yields an F(k, T — k — 2) statistic, where k + 2 is the total number of exogenous
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Figure 1. Inflation and marginal cost

variables and instruments. The AR statistic provides a test which is robust to (a) weak instruments
and (b) omitted instruments. We do not need all the u-elements necessarily, but power is lower
if irrelevant instruments are included. The test statistic also is robust to misspecification of the
forecasting rule for m,; (i.e., its size is not affected, though again its power may be).

The distributional assumption underlying the statistic’s being pivotal in finite samples is
normality of the GMM residuals. In the literature, the main drawbacks to this approach arise
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when the structural equation is nonlinear, or when there is more than one endogenous, explanatory
variable and we want to study subsets of their coefficients. But here the hybrid NKPC is linear,
we begin by treating x; as exogenous, and yy is a scalar.

The AR statistics also can be used to construct confidence intervals. A confidence set is

C(a) ={yfo : AR(yf0) = Fo(k, T — k — 2)} (20)

Since yy is a scalar, there is a quadratic solution, given by Zivot et al. (1998). The coefficients
of the quadratic equation are functions of the data and the F-statistic at significance level o and
degrees of freedom dim(u) and T — 2 — k. With over-identification this confidence set can be
empty. Without identification, it can be unbounded. More generally, Andrews and Stock (2007)
described how this confidence interval may be conservative (too wide) if there are other endogenous
right-hand-side variables.

Fourth, one criticism of the AR tests is that they lack power when there is over-identification.
We find these tests reject for the US and UK data. Thus, a lack of power is not a a central issue in
this study. A variety of approaches have been proposed recently to correct this potential shortfall.
We apply the LM test of Guggenberger and Smith (2008), which is robust to weak instruments
and suffers no power loss as over-identification rises. It also allows tests with multiple endogenous
variables. Guggenberger and Smith (GS) presented Monte Carlo work in which their LM statistic
has good sampling properties. For example, its power properties are comparable to the test of
Kleibergen (2005), and sometimes superior when there are many instruments. Thus our evidence
complements Dufour ef al. (2006), who applied Kleibergen’s test to the US NKPC.

A further advantage of the GS LM statistic is that it allows tests of parameters from nonlinear
moment condition models. Recall that the NKPC interprets the parameters {yy, y, A} as arising
from an underlying structure with parameters {8, 6, w} given the mapping (2). We employ the GS
LM statistic to test hypotheses on several values of 6§ and w. In this approach we assume that
parameters not under test are strongly identified. In test statistics, these parameters are replaced
by consistent estimates. For methods to test subsets of parameters under weak identification, also
see Dufour and Taamouti (2005), Guggenberger and Smith (2008, Section 2.3), and Section 7.8
of Andrews and Stock (2007).

5.2. United States

Table I presents evidence on real marginal cost dynamics for a US sample of 194901-200104.
We fail to reject the null that inflation does not Granger-cause real marginal cost according to
the first two rows of Table I. In addition, the AIC and LR statistics choose a lag length of 3,
while the SIC selects a lag length of 1 for the x-autoregression. It is not surprising then that the
second-order coefficient in this regression is insignificantly different from zero. The implication
of these pre-tests is that finding relevant instruments may be a challenge in the US data. Although
US real marginal cost is persistent (the half-life of a shock is about seven quarters), there is not
strong evidence of higher-order dynamics in US real marginal cost. Campbell and Shiller (1987)
and Boileau and Normandin (2002) also showed that the presence of other predictors of x; should
lead to a role for lagged inflation, yet we find none here. Thus, the quest for other instruments
may not be fruitful.

Table II contains single-equation GMM estimates. Most of the work is done by the instruments
{m—1, X, x;—2}, as is suggested by the pre-test evidence that only x; and x;_, help forecast x;;;.
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Table 1. Granger non-causality tests

Country Lag length (d.f.) p f>x px fom
USA 3 0.18 0.05
USA 4 0.24 0.08
UK 4 0.01 0.00
UK 5 0.01 0.00
Canada 3 0.00 0.73
Canada 4 0.00 0.63

The lag lengths, J, are the same as those selected by information criteria. Entries are p-values for the null hypothesis that
the first variable does not Granger-cause the second variable. Data sources and sample sizes are given in Appendix B.

Adding further instruments increases the precision slightly but does not lead to significant changes
in the estimates. Omitting x, from the instrument set does have an effect though, as it leads to
7s > 1l and 3, < 0, for example. The associated J-test clearly does not reject the over-identifying
restrictions.

Whenever we include x, in z,, the estimated weight on lagged inflation, },, ranges from 0.28 to
0.42, depending on the instrument set. The GMM estimates show these expectations are dominated
by forward-looking expectations because ¥, ranges from 0.52 to 0.70. The response of 7; to x;,
denoted ):, also takes plausible values, between 0.1% and 0.9%, but is not statistically significant
(for a 5% test). Our results are comparable to those of Gali and Gertler (1999, Table I), but we
obtain smaller and insignificant estimates of A using smaller instrument sets.

Table II also includes estimates of {6, w, B} from the US data. The estimates imply that about
10% of firms have the opportunity to change price each quarter and of those 30—55% choose
not to do so. The point estimates ,B are implausibly low for quarterly data, but all within one

Table II. US new Keynesian Phillips curve

Elmy — yfEmts1 — V-1 — x|z ] =0
194901-200104 T =212

Instruments 7 (SE) » (SE) % (SE) & (SE) 6 (SE) B (SE) ¥2 (d.£) (p)
i1, Xg, X1—2 0.685 0.300 0.001 0.406 0.961 0.965 —
(0.357) (0.247) (0.007) (0.465) (0.163) (0.306)
i1y Xey oy X2 0.527 0.415 0.009 0.566 0.902 0.797 2.11(1)
(0.298) (0.205) (0.005) (0.321) (0.094) (0.480) (0.34)
Ty Xty -y Xya 0.706 0.275 0.008 0.333 0.892 0.961 3.47(3)
(0.223) (0.158) (0.006) (0.263) (0.064) (0.169) (0.48)
Ty ey Xpy oy X1 0.701 0.278 0.009 0.338 0.893 0.956 3.48(4)
(0.188) (0.141) (0.005) (0.234) (0.054) (0.135) (0.63)
Ty Xi—1s s X1 1.288 —0.138 0.020 —0.099 0.826 1.118 0.63(2)
(0.806) (0.570) (0.023) (0.349) (0.059) (0.113) (0.88)
OLS 0.461 0.456 —0.001 0.655 1.008 0.657

The estimation sample runs from 194901 to 200104, based on the complete 19470Q1-20020Q2 sample. Tests of the
over-identifying restrictions use the J-statistic.
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standard error of plausible values close to 1 (again with the exception of the case with only lagged
instruments).

Next, we provide tests for the forward-looking component in the US NKPC that are robust
to weak identification. Table III presents AR F-statistics and their associated p-values based on
equation (19) and a grid of potentially ‘true’ y; = yro. We set yo to [0.0, 0.2, 0.5, 0.6, 0.7, 0.8,
0.9, 0.99]. The AR statistics in the first row reveal little evidence against the null of y; = yyo, for
any of these values of yro given u; = x;_». When we add instruments though—in the next two
rows—we can reject any of the null hypotheses at standard significance levels. Thus, lags of real
marginal cost besides x;_, matter for predicting the quasi-difference of m; and m,y;. The test is
correctly sized even if these added instruments are weak, which gives us a formal rejection of the
forward-looking model.

Table III also provides information on the asymptotic 95% confidence interval C(a = 0.05) of
vy, given in (20). In the first row, with u, = x,_, the confidence interval includes all values of y;
between 0 and 1 (as well as the corresponding GMM estimate from Table II). Wide confidence
intervals reflect weak identification just as do the large S-sets found by Ma (2002). But when
we add instruments in the second and third rows the corresponding 95% confidence intervals are
empty. These findings constitute evidence against the hybrid NKPC.

It is interesting to note the contrast with some of the findings of Dufour et al. (2006), who
used a real-time, linearly detrended, output gap measure in the US NKPC and could not reject a
significant, forward-looking component in US inflation using robust methods. It remains an open
question how sensitive test results are to the choice between using marginal cost or the output gap
in the NKPC or, indeed, to different ways of measuring these variables.

Table IV presents the GS test statistics for various values of 6 and, separately, of w. The grids
for these underlying parameters are suggested by the GMM estimates in Table II. Across a gird
of values, the test rejects each value of 6 with the exception of (a) 8 = 0.9 on the just-identified
instrument set (which yields an estimate of § greater than one) and (b) 6 = 0.8 with the lagged
instrument set (which yields an estimate of 8 greater than one and an estimate of w less than zero).
In the lower panel of Table IV we find that, for those w for which the GS test does not reject (at
conventional levels of significance), the estimates of 0 are between 0.93 and 1.03. Joint tests (not
shown but available on request) lead to similar conclusions. With the largest instrument sets, the
test also rejects each value of w.

Table III. US NKPC: Tests of Hy : yf = Yo

T — Vo1 = Qo + 01701 + X + a3y
Anderson—-Rubin statistic

194901-200104 T =212

vio = 0.00 (p) 020(p) 050(p) 0.60(p) 070(p) 080(p) 090 (p) 099 (p)

u =
{xr—2} 2.15 (0.14) 1.31 (0.25) 0.21 (0.65) 0.04 (0.83) 0.00 (0.97) 0.07 (0.80) 0.21 (0.64) 0.39 (0.53)
{xr—1, x—2} 443 (0.01) 5.17 (0.01) 5.85 (0.00) 5.83 (0.00) 5.68 (0.00) 5.45 (0.00) 5.17 (0.01) 4.90 (0.01)
{x—1,...,x—4} 2.47(0.05) 2.92 (0.02) 3.34 (0.01) 3.33 (0.01) 3.24 (0.01) 3.10 (0.02) 2.93 (0.02) 2.77 (0.03)

The Anderson—Rubin statistics are based on equation (19).
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Table IV. US NKPC: Tests of Hy: 0 =6y or Hy : w = wy

Elysmi1 — 1 + vpmmi—1 + Axlz] =0,

po o) (1 —w)1—-06)(1— po)
Vf:E» )’b=$, A= " ,
Guggenberger—Smith LM statistic ~ Xz(])
194901-200104 T =212

$=0+o[l—06(—p)]

B = 0.40 (p) 0.50 (p) 0.60 (p) 0.75 (p) 0.80 (p) 0.85 (p) 0.90 (p)

i =

{mmi—1, x1, x1—2} 41.32 (0.00) 68.00 (0.00) 43.30 (0.00) 29.88 (0.00) 22.44 (0.00) 11.29 (0.00) 2.36 (0.12)
{m—1, %, ..., x—2} 5272 (0.00) 51.46 (0.00) 47.71 (0.00) 35.06 (0.00) 30.21 (0.00) 26.86 (0.00) 17.27 (0.00)
{mi—1,, x—1,x-2} 45.59 (0.00) 33.76 (0.00) 46.63 (0.00) 6.71 (0.01) 0.09 (0.77) 4.92 (0.03) 16.34 (0.00)

w = 0075 (p)  0.15 (p) 0.25 (p) 0.35 (p) 0.45 (p) 0.50 (p) 0.60 (p)

{mwi—1, %, X2} 6.96 (0.01) 5.01 (0.03) 1.18(0.28) 0.26 (0.61) 0.01 (0.90) 0.16 (0.69) 1.34 (0.25)
{me—1, %, ..., x,—2} 24.80 (0.00) 35.10 (0.00) 15.71 (0.00) 30.27 (0.00) 28.84 (0.00) 28.04 (0.00) 28.87 (0.00)
{m—1, Xi—1, x1—2} 6.27 (0.01) 7.63 (0.01) 8.57 (0.00) 10.82 (0.00) 19.37 (0.00) 22.80 (0.00) 24.33 (0.00)

The Guggenberger—Smith LM statistic tests the null that 6 = 6y or w = wy. See Guggenberger and Smith (2008) for
details.

A comparison of the first row of Table III (AR tests) with the first row of Table IV (GS tests)
shows very different p-values, with the same instrument set. That difference occurs because the
two tables test at different points in the parameter space. Table III fixes y;, which equals £6/¢, to
compute the AR statistics. Table IV fixes 6 to compute the GS statistics. Thus, the AR statistic fixes
the ratio/combination of three deep structural parameters, while the GS statistic sets 6 conditional
on being able to identify B and ¢. The values of y, that are accepted in the first row of Table III
(though rejected with more instruments later on in the same table) turn out, in Table IV, to be
inconsistent with reasonable values of 6.

5.3. United Kingdom

The estimation sample for the UK is 196101-200004. Table I shows that the Granger-causality
pre-test provides strong evidence of predictability in both directions. This result implies that lagged
values of inflation (beyond the first two lags) may be available as instruments. The second set of
pre-tests indicates a lag length in the x-autoregression of J =5 using the LR test and SIC. This
places more of the history of x in the instrument vector z; than in the US case.

Table V contains estimates of the UK hybrid NKPC. The GMM estimates depend on instrument
choice. Once lags up to x,_4 are included, the coefficients accord with theory and are estimated with
some precision. However, the over-identifying restrictions are rejected when x; is an instrument.
When we use only lagged instruments, the estimates of yr, 5, and A are significant at the 10%
level or better, and the p-value for the J-test rises to 0.22. Neiss and Nelson (2005) obtained
statistically significant estimates of A, but used dummy variables to control for a variety of price
shocks. Table V also shows that the Calvo parameters are quite sensitive to the instrument set, a
potential sign of weak identification.
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Table V. UK new Keynesian Phillips curve

Elmy — yfEmts1 — V-1 — Axt1ze]
196101-200004 T =168

Instruments f (SE) % (SE) 3 (SE) & (SE) 0 (SE) B (SE) ¥? (d£) (p)

Tio 1y Xps X1 —2.699 2.396 0.924 0.702 0.492 —1.608 —
(4.782) (3.047) (1.531) (0.113) (0.337) (1.412)

Tre 1y Xr—1s ey Xo—g 0.935 0.019 0.334 0.011 0.570 0.953 4.40(2)
(0.266) (0.192) (0.152) (0.114) (0.065) (0.113) (0.22)

Tie 1y Xty ey Xed 0.234 0.535 0.062 0.562 0.801 0.307 9.82(3)
(0.200) (0.120) (0.133) (0.139) (0.303) (0.287) (0.04)

Tio 1y T2y Xp + oy Xt 0.233 0.621 —0.045 0.842 1.569 0.201 15.94(4)
(0.153) (0.107) (0.089) (0.224) (2.120) (0.242) (0.01)

OLS 0.413 0.400 0.107 0.393 0.708 0.574

The estimation sample runs from 196101 to 200004, based on the complete 195903-20010Q2 sample. Tests of the
over-identifying restrictions use the J-statistic.

In contrast with the standard methods in Table V, however, Table VI gives evidence against the
null of yy = yyo for the UK hybrid NKPC. The significance levels of the AR statistics average
0.03 in Table VI, for the projection (19), on the same grid of values of y ;o used for Table IIL
Only two of the 16 AR statistics have p-values that exceed 10%, which are associated with the
instrument x,_1, and yyo near unity. Once we include several instruments, in the second row of
Table V, we find an asymptotic 95% confidence interval that is empty, as was the case for the
USA. Again this is evidence against the hybrid NKPC.

Table VII presents the GS test statistics. The results are even more negative than in the US case
shown in Table IV. The test rejects each value of 6 or w that we investigate, with each instrument
set. Overall, then, the methods that are robust to weak identification provide a different impression
of the UK NKPC than do standard methods.

Table VI. UK NKPC: Tests of Hy : yy = ys0

T — VFOT+1 = Qo + o1 70—1 + 02X + a3y
Anderson—Rubin statistic

196101-200004 T = 168

o = 000 (p) 020(p) 050(p) 060(p) 070(p) 080(p) 090(p)  0.99 (p)

Uy =
{xr—1} 6.84 (0.01) 6.53 (0.01) 5.00 (0.03) 4.32 (0.04) 3.63 (0.06) 2.98 (0.09) 2.40 (0.12) 1.94 (0.17)
{x—1, ..., x—a} 4.52 (0.00) 4.58 (0.00) 4.53 (0.00) 4.47 (0.00) 4.40 (0.00) 4.32 (0.00) 4.24 (0.00) 4.18 (0.00)

See the notes to Tables III and V.
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Table VII. UK NKPC: Tests of Hy : 8 =6y or Hy : w = wy

Elysm1 — 7t + vomt—1 + x|z ] = 0,
Bo ® (1 —w)(1 —0)(1 — po)
= —, = —, A= ,p =0+ w[l —06(1 —
vf P Vb " " ¢ ol (1-p)]1

Guggenberger—Smith LM statistic ~ Xz(l)
196101-200004 T = 168

6o = 0.40 (p) 0.50 (p) 0.55 (p) 0.60 (p) 0.75 (p) 0.80 (p) 0.85 (p)
i =

{mmi—1, x0, x—1} 24.12 (0.00) 20.41 (0.00) 14.58 (0.00) 11.90 (0.00) 9.82 (0.00) 9.75 (0.00) 9.51 (0.00)
{1, %00 ooy Xp—a} 30.83 (0.00) 28.33 (0.00) 28.37 (0.00) 27.66 (0.00) 26.98 (0.00) 22.14 (0.00) 19.43 (0.00)
{mi—1, %1, ..., x—a} 2524 (0.00) 21.89 (0.00) 19.34 (0.00) 15.87 (0.00) 14.16 (0.00) 13.29 (0.00) 13.24 (0.00)
wy = 0.05 (p) 0.25 (p) 0.40 (p) 0.50 (p) 0.55 (p) 0.65 (p) 0.70 (p)
{mme—1, X, x¢—1} 9.33 (0.00) 8.77 (0.00) 9.51 (0.00) 9.61 (0.00) 9.35(0.00) 9.02 (0.00) 9.08 (0.00)
(=1, Xy oo, Xi—a) 39.73 (0.00) 42.22 (0.00) 36.12 (0.00) 26.15 (0.00) 39.04 (0.00) 37.12 (0.00) 38.75 (0.00)
{m—1, %1, ..., x4} 18.44 (0.00) 19.99 (0.00) 17.25 (0.00) 34.97 (0.00) 36.07 (0.00) 34.21 (0.00) 37.81 (0.00)

See the notes to Tables IV and V.

5.4. Canada

Estimating and testing the Canadian NKPC uses data from 196301 to 2000Q4. Table I shows that
Canadian inflation Granger-causes real marginal cost. This table also shows real marginal cost
fails to Granger-cause inflation—in contrast to results for the UK and US data. The pre-tests for
lag length reveal a persistence pattern similar to that in US real marginal cost, according to the
LR test, the AIC, and the SIC. In the time series {x,}, once-lagged costs play a large predictive
role and thrice-lagged costs play an additional role that is statistically significant. However, a
half-life of 8.5 quarters with respect to a shock to its third-order, autoregressive process shows
that Canadian real marginal cost is more persistent than it is in the UK and the US data.

Table VIII contains estimates of the hybrid NKPC parameters y;, ¥, and A for Canada. They
suggest that the hybrid NKPC is poorly identified. For example, the point estimates y and y;, are
sensitive to the instrument set. When we include 7;_, as an instrument, these two coefficients are
similar to those found in the US data, with a large role for future inflation. Guay er al. (2003)
estimate the hybrid NKPC using a wider range of instruments. They increase precision and reject
the over-identifying restrictions. However, we reproduce their finding that A is insignificant. This
indicates little role for real marginal cost in Canadian inflation dynamics. Table VIII also shows
that either we cannot find an economically plausible value for the discount factor S or we obtain
a wide 95% asymptotic confidence interval for 8 that runs from 0.71 to 1.24 (using the largest
instrument vector).

Table IX includes AR statistics that favor forward-looking inflation dynamics for Canada, which
is the opposite of the results found in the US and the UK data. None of the hypothesized values of
¥ can be rejected at the 5% level in Table IX. Thus, the AR 95% asymptotic confidence intervals
for yr, C(0.05), should cover plausible values. We find that these intervals are unbounded for each
instrument set in Table IX.
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Table VIII. Canadian new Keynesian Phillips curve

Elm — yrE 41 — VpT—1 — Axelz ] =0
196301-200004 T =152

Instruments 75 (SE)  » (SE) i (SE) & (SE) o (SE) B (SE) ¥? (d£) (p)

T 1, Xp X2 —0.197 0.868 0.039 0.736 0.892 —0.188 —
(2.085) (1.374) (0.074)  (0.186)  (0.040)  (1.726)

Tty Xty ey Xy 0.277 0.562 0.021 0.663 0.891 0.366 0.29(1)
(0.768) (0.514) 0.027)  (0.287)  (0.033)  (1.201) (0.86)

Tt ty Xe1s ey Xet —-1.052 1.466 0.061 0.785 0.902 —0.625 1.25(3)
(1.274) (0.876) (0.049)  (0.061)  (0.039)  (0.405) (0.87)

Tie 1y T2y X1+ oy X1t 0.716 0.274 0.005 0.341 0.911 0.979 2.48(4)
(0.167) (0.121) (0.009)  (0.191)  (0.053)  (0.133) (0.78)

OLS 0.442 0.430 0.019 0.534 0.889 0.618

(0.047) (0.043) 0.011) (0.029) (0.017) (0.013)

The estimation sample is 196301-200004 with leads and lags taken from a 196101-2001Q1 sample. Tests of the
over-identifying restrictions use the J-statistic.

Table IX. Canadian NKPC: Tests of Hy: Y5 = Vo

T — Vo1 = Qo + 01771 + X + a3y
Anderson—-Rubin statistic

196301-200004 T = 152

Yro = 0.00(p)  020(p) 050(p) 060(p) 070(p) 080(p) 090(p) 099 (p)

U =

(v} 0.01 (0.91) 0.07 (0.80) 0.22 (0.64) 0.28 (0.60) 0.33 (0.57) 0.37 (0.54) 0.41 (0.52) 0.43 (0.51)
(X1, x1—2) 0.40 (0.67) 0.31 (0.74) 0.20 (0.82) 0.18 (0.84) 0.18 (0.84) 0.19 (0.83) 0.20 (0.82) 0.22 (0.80)
{41y ... X4} 0.69 (0.60) 0.82 (0.52) 0.95 (0.44) 0.96 (0.43) 0.96 (0.43) 0.94 (0.44) 0.91 (0.46) 0.87 (0.48)

See the notes to Tables III and VIII.

The non-rejection (and unbounded confidence intervals) in Table IX may reflect a lack of test
power. Table X presents the GS test statistics for Canada. Recall that this test has greater power in
over-identified cases. With relatively small instrument sets, there is some support for the selected
values of 6 or w, but at these values the estimates of y, are less than 0.1. But with larger instrument
sets, all the values of 6 and w we consider are rejected. Thus, the GS tests provide very limited
support for the hybrid NKPC in Canadian data.

5.5. Discussion

Overall, the finding from tests robust to weak identification is that there is little evidence of
forward-looking dynamics in US, UK, and Canadian inflation. Moreover, based on estimates of
AL—the slope of the NKPC—there also is little evidence of a significant relationship between
inflation and marginal cost in these three countries and time periods. Point estimates A generally
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Table X. Canadian NKPC: Tests of Hy: 6 =6y or Hy : w = wy

Elysmiy1 — e+ vorm—1 + Axlz] = 0,
BO w (1 —w)(1 —06)(1 — Bo)
Vi=—s VWb=—, A= . $p=0+ow[l-001-p)]
T ¢ ¢
Guggenberger—Smith LM statistic ~ Xz(])
196301-200004 T =152

6 = 0.40 (p) 0.50 (p) 0.60 (p) 0.75 (p) 0.80 (p) 0.85 (p) 0.90 (p)
it =
{71, x4, x,—2} 2.14 (0.14) 4.63 (0.03) 11.81 (0.00) 26.09 (0.00) 28.53 (0.00) 8.49 (0.00) 0.06 (0.81)
{mm—1, Xe0 o ooy Xi—2} 7.33 (0.01) 7.41 (0.01) 7.90 (0.00) 4.49 (0.03) 14.08 (0.00) 19.25 (0.00) 2.51 (0.11)
(T 1, X1y - .., X—a}  39.66 (0.00) 41.13 (0.00) 46.81 (0.00) 28.59 (0.00) 18.42 (0.00) 9.42 (0.00) 3.65 (0.06)
wy = 0.40 0.50 0.60 0.65 0.70 0.75 0.80
(p) (p) (p) (p) (p) (p) (p)
{71, x4, x,—2} 8.40 (0.00) 6.86 (0.01) 3.46 (0.06) 1.57 (0.21) 0.33 (0.56) 0.03 (0.86) 1.32 (0.25)
{m—1, X, oo oy Xi—2} 6.54 (0.01) 4.75(0.03) 2.88 (0.09) 2.41(0.12) 3.16 (0.08) 6.54 (0.01) 14.46 (0.00)
(Tt X1y .., X—a}  19.28 (0.00) 17.15 (0.00) 14.24 (0.00) 12.71 (0.00) 10.68 (0.00) 8.49 (0.00) 10.15 (0.00)

See the notes to Tables IV and VIII.

are positive but have large standard errors. Inspection of the graphs of {m;, x;} in Figure 1 shows
why it is hard to argue that mr, tracks x;, whatever the dynamics, in these data.

This raises the question of why some other studies find greater evidence in favor of the new
Keynesian Phillips curve. There are three main differences across studies. First, studies may vary
in their measure of x,, either by measuring marginal cost in different ways or by using an output
gap. As we have noted, studies that use an output gap tend to find greater evidence of a positive
slope, A.

Second, a variety of studies we have cited make use of additional information such as survey data
on expectations or restrictions on a system. For example, several studies in the September 2005
special issue of the Journal of Monetary Economics on the econometrics of the new Keynesian
price equation take this approach rather than using the limited information estimators we have
studied here.

Third, studies that do use limited information/GMM estimation may differ in their choice of
instruments. Recall that one of the symptoms of weak identification is the use of large instrument
sets and that under weak identification GMM estimates are biased in the direction of OLS estimates.
In the last row of Tables II, V, and VIII we include OLS estimates of the NKPC as a limiting
case. For the USA, Table II shows that OLS estimates naturally have smaller standard errors
than the GMM estimates. They imply a smaller weight on expected future inflation and a larger
weight on lagged inflation. But they still find an insignificant slope to the US Phillips curve.
For the UK, Table V shows that the OLS estimates involve greater weight on future inflation,
less weight on past inflation, and a larger, positive point estimate A than do the previous two
rows of GMM estimates. For Canada, Table VIII shows that the estimates are very sensitive to
the instrument set, with the OLS values lying somewhere in the middle of the range of GMM
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A

estimates. Once again the standard errors of y; and y, are small and the point estimate A is
positive.

For all three countries, OLS yields a positive, significant weight, )A/f, on future inflation. The
OLS results provide a limiting case of GMM as weak instruments are added. They contrast with
the findings that are robust to weak identification where, especially for the USA and UK, there is
little evidence of forward-looking inflation dynamics.

6. CONCLUSION

This paper is about identification problems in the hybrid new Keynesian Phillips curve (NKPC).
We show that estimation of the hybrid NKPC by GMM faces a fundamental source of non-
identification: weak, higher-order dynamics. By setting the hybrid NKPC in a new Keynesian,
three-equation model, we find the hybrid NKPC cannot be identified by GMM even when shocks
are persistent.

We draw on the Anderson—Rubin statistic to provide a new set of tests of the forward-looking
inflation model. These test statistics are robust to either weak or omitted instruments. The tests
reveal little evidence of forward-looking expectations driving US or UK inflation. When we add to
test power by using the tests derived by Guggenberger and Smith (2008), we also reject the model
of inflation for Canada. It is noteworthy that in all three cases the conventional J-test statistic does
not reject the over-identifying restrictions.

This study has used asymptotic critical values. It would also be worthwhile to study the sampling
properties of the estimators and test statistics in an economically interesting DGP. As Section 4
shows, the NKTM probably does not qualify, at least for the study of the limited information
methods used here.

Rejecting a necessary condition is sufficient for rejecting a model. As usual, then, an advantage
of the limited information approach is that it may alert us to an empirical difficulty without
requiring a complete model. But whether the test rejections here are due to misspecification of
the economic model of inflation, or to measurement problems, or to the assumption of rational
expectations is worthy of further exploration.

APPENDIX A: ANALYTICAL SUMMARY AND PROOFS

Proposition 1 If a consistent estimate A is available, then an additional instrument is available
in z, but not in z;_;.

Proof: The rank condition requires three instruments to identify {y;, yr, A}. When A is known or
estimated from auxiliary information then x; becomes a valid instrument for 7, ; the instruments
x; and 7,_; can be used to identify yy and y,. But with instruments z,_; three variables in the NKPC
(3) remain to be forecast, {m,41, 71;, x;}, even given an estimate A Thus, a two-step procedure does
not aid identification with lagged instruments.

Proposition 2 Restricting y, =0, or y, =1 — yy, or calibrating a discount factor § in an
underlying pricing model may aid identification.
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Proof: Any one of these restrictions reduces the number of parameters to be estimated from three
to two, so that only two instruments now are needed for identification.

Proposition 3 Solving the NKPC forward and truncating provides no additional information to
aid identification (or improve efficiency).

Proof: The difference equation—solved forward and truncated—still involves the three parameters
{vr, b, A}. Were there valid instruments for each future x,4; in the solution (4), these parame-
ters would be over-identified because the estimating equations (7) contain more variables than
parameters when K > 1. Nonetheless, the number of relevant instruments is unaffected by the
transformation, so the conditions for identification are unchanged.

Proposition 4 Whether z; or z,_; is adopted, the GMM residual is an MA(1) process, so any
instrument set must exclude once-lagged GMM residuals.

Proof: Suppose that x; evolves as an autonomous, first-order autoregression:
X = pX—1 + & (A1)

where ¢, is an innovation with respect to past values of x. This setup is without loss of generality,
for higher-order dynamics also can be written in first-order, state-space form with a suitable
definition of x. First, suppose that x; € z;. Using well-known methods the solution to the present-
value model (4) is N

i A2
& — vy (A2)

Elmi|mi—1, %] = §1m-1 +

Define the forecast error:
n = 7 — Elm |71, x] (A3)

which arises because agents may have more information than the econometrician. From the NKPC
(1) and (A1)—(A3), the estimating equation error is

vy — Elmlm—r, x]1) — ( — Elmy w1, x]) =

iny + + * (A
48 J—
Y\ 01N T Neg1 ©2— Py t+1 Ny

which follows an MA(1) process. Second, suppose that x; ¢ z, but that x;_; € z,. The estimating
equation error is

V(1 — Elmg |71, Xx—1]) — (7w — Elmr|m—1, X—1])

+ A0 — Elxlmi—1, x—11) = vy <Wt+1 + 81, Err1

+ B —
(62 — p)yr

+(1 + p) £l> + A& (A5)

A 8)_<+ A
G-y ) \" T &=y
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which again is MA(1). In either case this composite error thus is not orthogonal to its lagged
value, so use of the lagged value as an instrument violates the order condition.

Proposition 5 In the new Keynesian, three-equation model with unpredictable shocks, the hybrid
NKPC cannot be identified by single-equation GMM.

Proof: In the first-order Markov solution (13), m;;1 can be predicted by w, = (r,y,). With y,
entering the NKPC as a separate regressor, no instruments are available for ;.

Proposition 6 In the NKTM (8) with persistent shocks the hybrid NKPC is not identified under
GMM.

Proof: The proof proceeds in two steps. First, we show that the shocks to the solved model are
correlated, even if the underlying shocks in the NKTM are not correlated. Suppose that the 2 x 1
vector of shocks, ¢, follows a Jth-order autoregression. Stack the shocks like this:

& = (&1 -+ 3t71+l)/ (A6)
The autoregression can be written
gt = Agt—l + 9 (A7)

where ¥ is a 2 x 1 vector of innovations and A is a matrix of size 2(J — 1) x 2(J — 1). The
solution to the NKTM is of the form

w; = aw;_1 + bg; (A8)

using the standard result that the number of lags in the solution is one less than the order of the
autoregression. Combining (A7) and (A8) gives

[l — ALlw; = a[l — AL]w;_1 + b?, (A9)

so that the dynamics of w, are of order J + 1.
Solving for a and b by the methods of undetermined coefficients of Zadrozny (1998) involves
a two-step process. First, note the endogenous bivariate autoregressive dynamics imply

c 0 E.w; —U—-f] d we | (0
G o) )=0)- eo

The 4 x 4 matrix attached to [E,w,,w,]’ is nonsingular, so standard eigenvalue routines allow us
to recover the four elements of a.

Given a solution for a, compute the four elements of b by substituting for E,w,.; and w; in
(A10) employing the conjectured solution (A8). These actions give us

[(ca—[I — fDa+dlwi—y = —cbEierps — [I + (ca— [I — fDble; (AL1)
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Next use the law of motion for the shocks (A7) to substitute for E,&,4; in (All) and pass the
vec operator through the result to obtain the solution

vec(b) = =[(p, ® ) + (' ® (ca— [I — f1)] ' vecl) (A12)

where use is made of the fact that vec(JKL) = (L’ ® J)vec(K). Thus, b is not, in general, a
diagonal matrix given the structure of the matrices ¢, f, and a. Therefore the two elements of b1,
are correlated.

Second, we show that this correlation rules out identification. To find candidate instruments for
.41, we use the common-factor model (A9) because it involves only observable variables and inno-
vations. Future inflation 7;;, can be predicted using the 2 x J set of variables {w;, w;_1, - - - w;_;}.

Valid instruments also must be uncorrelated with the residual in the NKPC, ¢,,. For any positive
J and given the correlation between the two elements of b1, the variables x,_; and y, also must
be instrumented in the NKPC. But ¢, is correlated with {w,, w,_1, - - - w,_;}, so there are no valid
instruments.

Proposition 7 In the NKTM (8) with interest rate smoothing in monetary policy the hybrid
NKPC is not identified under GMM.

Proof: Interest rate smoothing gives
R, = (1 = v)(wrm + wyy) + Ry + €, (A13)

with 0 < v < 1. Define the new state vector: w; = (7, y,R;). This remains first-order Markov, so
m+1 can be predicted only by w,. Among the elements of w;, ; is ineligible as an instrument
because it is the regressand in the NKPC, while y, and R, are correlated with ¢, because both the
IS curve and the policy rule contain ;.

Proposition 8 When the NKTM possesses multiple equilibria and the rational expectations
forecast errors are a (linear) function of the fundamental and extrinsic shocks, the hybrid NKPC
is not identified under GMM.

Proof: The bivariate ARMA model (17) has a moving average component with no roots inside the
unit circle, and so the vector moving average is nonfundamental. The lag polynomial operator for
the sunspot innovation is invertible only in the forward direction, as shown by Lippi and Reichlin
(1994). Thus, ;4 is not predicted by lagged, observable variables as a result of the sunspot, so
no new instruments are available.

APPENDIX B: DATA SOURCES
United States

The price level P, is the GDP implicit price deflator. The GDP deflator is available in chain weight
form and in implicit form (all the US results are based on the implicit GDP deflator). Nominal unit
labor cost (ULC) is the ratio of the index of hourly compensation in the non-farm business sector,
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labelled COMPNEFB, to output per hour of all persons in the non-farm business sector, labelled
OPHNFB. COMPNEB is an index of the nominal wage. OPHNFB is an index of the average
product of labor. These can be found in the Federal Reserve Bank of St Louis FRED databank.
Thus, ULC is a measure of labor’s share. Real ULC equals nominal ULC deflated by P,. Inflation
is 100 In(P,/P;-1) and real ULC is 100(1 + ¢) In(COMPNFB,/OPHNFB,) — 1001n P;, where ¢ is
a function of the steady-state markup and labor’s share parameter in the firm’s production function.
This adjustment renders real ULC stationary and ¢ = 1.08. The entire sample runs from 194701
to 200204, but the estimation sample period is 194901-200104, T = 212.

United Kingdom

The inflation rate is measured with the GDP deflator, and x is a measure of the log of real
marginal cost. Data sources are given by Neiss and Nelson (2005), who kindly provided the data.
The estimation period is 196101-200004, so T = 168.

Canada

The inflation rate is measured with the GDP deflator, while x is the log of the labour share in the
non-farm, business sector. Data sources are given by Guay et al. (2003), who kindly provided the
data. The estimation period is 196301-200004.
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