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STAGGERED PRICES IN A UTILITY-MAXllMIZING FRAMEWORK 

Guillermo A. CALVO* 
C.E.M.A. and Caluntbia UniwGty, New York, iv Y 10027, USA 

We develop a model of staggered prices along t-re lines of Phelps (1978) and Taylor (1979, lF80), 
but utilizing an analytically more tractable price-setting technology. ‘Demands’ are derived from 
utility maximization assuming Sidrauski-Brock infinitely-lived families. We show that the nature 
of the equilibrium path caih be found out 81 the basis of essentially graphical techniques. 
Furthermore, we demonstrate the usefulness of the model by analyzing the welfare implications 
of monetary and fiscal policy, and by showing that despite the price level being a predetermined 
variable, a policy of pegging the nominal interest rate will lead to the existence of a continuum 
of equilibria. 

1. Introduction 

In this paper we analyze the macroeconomic implications of assuming that 
(1) nominal individual prices are not subject to continuous revisions, and (2) 
price revisions are non-synchronous. In order to capture this phenomenon in 
a simple manner we assume that eac,h price-setter (or firm) is allowed to 
change his price whenever a random signal is ‘lit-up’. We assume that the 
probability that the signal will be emitted in the next h periods follows a 
geometric distribution, is independent of the moment it was emitted in the 
past, and is also (stochastically) indepelrdent across firms. 

These assumptions generate, at any given point in time, a non-degenerate 
distribution of prices of different ‘viutages’. In a period analysis only a 
fraction of firms will receive the signal, the fraction converging to zero as the 
period shrinks towards zero. Since we s ssume continuous time, the price level 
is, therefore, a predetermined variable (tis in the standard Keynesian modei). 

An individual firm is assumed to set its price taking into account the 
expected average price and the ‘stat:: of the market’ (given by ‘excess 
demand’ here) during the relevant future. 

The above assumptions make the present model a close relative of the 
staggered-contracts model of Phelps (1978) and Taylor 11979, 1980). The 
main advantage of our formulation is its much greater analytical tractability, 
and also that it does not really depend on the existence of nominal 
constracts. Instead, the form in which *he price-change ‘signal’ is emitted is 
more consistent with a situation. where firms are subject to random shocks 
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that either prevent the& from making continuous price revisions, or, if the 
latter is not a constraint, that prevent them to observe and verify changes in 
the ‘state of nature’ that would otherwise lead to price changes. 

We exploit the added simplicity of the price-setting technology by 
enriching the ‘demand side’ of the model. In the above-mentioned attempts, 
aggregate demand was assumed to be an increasing function of, essentially, 
real monetary balances. In particular, interest effects were not taken into 
account. l 

We assume that the household sector is composed of a set of Sidrauski- 
Brock dynastic families whose (instantaneous) utilities depend on 
consumption and real money balances, and make their optimal plans under 
per$ect foresight.2 In this manner, we are able to place the ‘staggered-prices’ 
approach in a framework that makes it more direct!: comparable with Brock 
(1974), Fischer (1979) and Calvo (1979) - the: latter being models of perfect 
price flexibility. 

In section 2 the staggered-prices model is presented. We derive the 
interesting implication that the ‘velocity” of inflation (i.e., a, where n is the 
rate of inflation) is a decreasing function of excess demand. Thus, showing 
that the model involves postulating what might be called a ‘higher-order’ 
inverse Phillips Curve. 

Section 3 develops the demand side of the model. The main cor;ceptual 
hurdle there is to decide what is the relevant price level for the representative 
family, given the fact that the price staggering hypothesis implies the 
existence of a nondenegerate distribution of prices. This is resolved by 
assuming that families after-tax price is the same in every firm (via a Price 
Regulating Mechanism, PWM). This assumption is made in order to isolate 
the analysis from microeconomic details that do not appear particularly 
relevant for an aggregate analysis. 

Under these assumptions we show the existence and uniqueness of a 
converging path that satisfies all the axioms of the model. 

In section 4 we show the usefulness of the model by demonstrating that a 
purely monetary policy is a welfare-superior instrument than a policy of 
expanding government expenditure, and by analyzing the implications of 
pegging the lnomirral interest rate. In this respect, we are able to show that 
the latter will lead to the existence of a continuum of equilibrium paths, 
implying, therefore that the indeterminacy problem encountered by Sarget 
and Wallace (1975) in connection with this policy is not just a mere artifllct 
of their perfect-price-flexibility assumpti& 

‘An e=cP~ion is Mm (1982) who simulated an extended version of Taylor’s (1979) model1 to 
account hr the e&% Of the real interest rate on demand. See also Calvo (1982) where such an 

in4 an open-economy context. 
s a viable assumption here because despite the uncertainty to which price- 
disappears ~XI the aggregate due to the further assumption that there is a 

more ar;curately, a continuum) of firms;. 
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An important point to mention here is that all of our qualitative results 
a:e independent of the actual average length of price quotations. 

2. A model of staggered prices 

We assume that the production side of the economy is populated by a 
‘large’ number (technically, a cant nuum) of identical firms. Without loss of 
generality, we assume that each of them is a point in the [O, l] interval, thus 
making their ‘total’ equal to unity. 

Each firm is capable of producing any amount of outlput up to a 
maximum of J units at zero variable cost, and output is assumed to be non- 
storable. In this fashion, we isolate the analysis from decisions about capital 
and inventory accumulation, and labor employment, which although 
important in real life are not essential for our staggered-price story.3 

We assume that each Firm can set its price only Fn terms of domestic 
currency, and that it can change it only at the time when a. price-change 
signal is received. The probability (density) of receiving such a signal 11 
periods from today is assumed to be independent of the last time the firm 
got it (the signal), and to be given by - 

6 c: -- dh, S>O. 

The above is an example of a situation where each firm 
announce prices in nominal terms and tinds it prohibitively 

(1) 

is forced to 
costly to be 

changing t.hem at every point in time. In previous papers this was justified by 
introducing a non-zero cost to changing prices [see Barro (1972). Sheshinski 
and Weiss; (1977)] but the emphasis there was in the determination of the 
optimal ti:me for a price change. In contrast, here as in Phelgs ,: 1975) and 
Taylor (1979, 1980), we let such ‘timing’ be exogenous. In this connection 
notice that,, by (l), the expected length of a price quotation is (l/S)l.’ 

Let us now consider the problem of a firm that is able to chan,gc its price 
at time t under perfect foresight. It seems quite natural to expect that the 
firm’s decision will be influenced by its forecast of the price set by 43ther firms 
and aggre8ate demand. A simple form that would capture this is 

:‘However,, some extensions like allowing for labor to be a variable input c.~kl rasily be 
accommodated within this framework. 

*The exogeneity of 6 is. in principle, a not very satisfactory feature of the m&r!. However. it 
is less restrictive than it may first appear, because all of our results are independe?.t UC the exact 
value of 6. In other words, they hold true for any 6~0. as long as 15 is a constant. 
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where V, is the (log of the!) price quotation set at t, P, is the ‘price level’ at 
time S, or moire specifically, the (log of the) geometric mean of outstanding 
price quotations at time s. Notilce that the perfect-foresight assumption 
allows us to use actual future values in formula (2). 

Formula (211 is in line with the clorresponding assumption in Phelps (1978) 
and Taylor (1979, 1980). In words, it asserts that prices set at t will be an 
increasing function of the average price set by competitors (P) and excess 
demand (E). Moreover, we weigh [~P,+jlE,] by the probability (density) that 
the price quotation could be revised at time s, i.e., recalling (l), 6e’dCs-r). 

Furthermore, we approximate the price level at t, by the following 
expression: 

P,=d i I/,e-d”--S)ds, 
- aa 

(3) 

Formula (3) will give us the exact value of P, if we further assume that the 
price-change signal is ‘stDchastically independent across firms. To see this, 
notice that since there is a continnum of firms, we can appeal to the ‘law of 
large numbers’ to deduce that a number S of firms (also a continuum) will 
receive the price-change signal per unit of time. By the same principle, of the 
total number of firms that set their price at s K t, a share 

e-&r -31 (4) 

will not have received the signal at time t.’ Therefore, 

is the ‘number’ (i.e., the measure) of firms which set th.eir prices at time s, and 
have not yet received a price-change signal at time t( > s). If we now define P, 
as the arithmetic average of the v’s outstanding al: t - weighted by the 
‘number” of firms with the same V - (3) follows. See also the appendix for a 
proof in a discrete-time context. 

ft is impor’tant to realize that under our assumptions P, becomes a 
predetermined variable at time t - its level being given by past price 
quotations. On the other hand, K is a iunction of the entire future, which 
can only be determined once the demand side of the model is incoporated. It 
should be noted, however, that, by (2), along a parth where P and E are 
uniquely determined, E’ is necessarily a coniinuous function of time. 

‘To see this, note that e-W-.,- -_I,?.6e-d”ds’ which, by (l), is the probability that a price 
quotation at s will ‘survive’ for more than (t--s) periods. The continuum and independence 

umptions aHow us to conclude that (4) is also the share of those price quotations remaining 
at 1. 
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At points in time where E, is continuous (which is going to be the rule in 
our experiments) we can differentiate (2) and (3) with respect to tia.le to get 

(5a, b) 

Consequently, if we identify the actual ( =expected) rate of irfation, n, 
with P, i.e., 

i&-P, (6) 

we get, by (5) and (6), 

fl,=~~=6[~-~J= --bE,, where 

b=6$9>0. 

(7) 

(8) 

It is interesting to contrast (7) with more naive models of the Phillips 
Curve that make n and increasing function of excess demand, E; here, 
instead, it is rf the one that explicitly depends on excess demand, and it does 
so in a negative manner, i.e., it falls with an increase in excess demand. 
Interestingly enough, and in line with Taylor’s papers, we will be able to 
show cases where in equilibrium l7 is connected with E in the same fashion as 
is postulated by the more naive formulations.6 

Given the production conditions postulated at the outset of this section, a 
profit maximizing firm will set its output equal to demand as long as the 
latter is less than or equal to ji; otherwise output will just be c. Hence. we 
have here a model where, as in the standard Keynesian framework. supply is 
demand-determined during periods of slack capacity. 

6F~r the sake of comparison, notice that in the Phelps-Taylor models, contract length is 
finite, and non-stocha.stic. Thus denoting the latter by 0. (2) becomes 

(F.1) 

while (3) takes the following form: 

P,=(l/U) { c:ds. 
1-O 

(E-2) 

Differentiating the above expression with respect to 1. leads to a difference-differential equations 
system with forward a:nd backward lags. In particular, 

@‘Ii,= -2[P~+E,]+P,+,+E,.+,+P,_b+E, eb) (F.3) 

and, thus. I’r, is also a decreasing function of E,, but the expression is now obviously much more 
complicated. * 
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3. Am qpgate general equilibrium model 

The model discussed in the previous section is incomplete because it 
cannot be solved unless E, excess demand, is explicitly modelled. One 
possible way to close the model is to assume that E is functionally related to 
real monetary balances, like in Taylor (1979, 1980); another is to assume that 
the price-setting mechanism applies to ‘home goods’, and make E a function 
of the ‘real exchange rate’, like in Calvo (1982). However, our strategy here 
will be somewhat less direct, and therefore amtlytically more interesting. We 
will assume that the households sector is composed by Sidrauski-type 
families [see Brock (1974), Calvo (1979)] who maximize a discounted sum of 
(instantaneous) utilities that depend on consumption and real monetary 
balances with perfect foresight. In this fashion we will be able to derioe an 
excess demand function from an optimization process that takes into account 
the path of all relevant variables over the entire future. 

More specifically, we assume that utility of the representative individual or 
family (as perceivt;d from the ‘present’, t = 0) is given by 

where c and m denote consumption and real monetary balances, and. iis 
usual 

u(c) is increasing twice-continuously differentiable anri 
striotly concave for c>O, ( IOaj 

v(m) is szictly conca.ve and twice continuously differentiable 
for m>O. 

Furthermore., in order 
states, we als,o assume 

lim u’(c) = 00, 
c-0 

lim v’(m) = 00, 
m-0 

(lob) 

to insure interior solutions and existence of steady 

(lla) 

lim u’(m) so. 
.%3 - al (1 lb) 

Compared to similar models with flexible prices, we face the additional 
problem that, sinze at any point in time firms charge difizrent prices, we have 
to specify how ‘clemand’ is generated for each firm; and here, of course, we 
are faced with a full gamut of possibilities ranging from the one where 
demand is concentrated at the firm charging the lowest price, to the Lucas- 
type case where consumers concentrate their, purch:~ses in one firm, which 
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each of them chooses in a random and mutually independent manner. An 
important point to keep in mind, is that in selecting a given set-up one has 
to make sure that it is in principle compatible with the assumed price-setting 
behavior on the part of the firms (section 2). 

We will assume that there exists a costless ‘price-regulation mechanism’ 
PRM which ensures that a consumer pays the same after tax price, whatever 
the firm at which he realizes his purchases. Furthermore, this uniform price is 
set equal to (the antilog of) P (recall section 2); in other words, the consumer 
price equals the geometric mean of all contract prices. In order to achieve 
this objective, consumers are subsidized (taxed) if they made their purchases 
at a firm whose V is larger (smaller) than P. In addition, and in order to 
make the price-setting formula (2) compatible with standard protit- 
maximizing behavior, the PRM includes a set of taxes that are charged to 
firms; the latter give disincentives to setting I/ larger than P, with penalties 
becoming stiffer the smaller is excess demand, E. Finally, any surplus or 
deficit associated with the operation of the PRM is covered by lump-sum 
subsidies or taxes to consumers. 

The main advantage of the PRM is that it allows us to abstract from the 
details of the matching of customers to firms, and thus substitutes the 
associated diversity of individual situations and price levels by a scenario 
more appropriate for aggregative analysis where consumers are faced with a 
uniform price level (the antilog of P). In this fashion we will be able to focus 
more sharply on the central issues. 

Assuming that households have equal shares of all the firms, and that 
money is the only asset, the flow budget constraint for the representative 
consumer becomes 

. 
mr=yr-c, - n,m, + lump-sum subsidies at t, 

where y, is income at time t. Thus, the problem faced by the representative 
family is to maximize (9), choosing the paths of c and M, subject to (12), and 
given m. and the paths of n, y, lump-sum subsidies, and any ‘quantity 
constraints’ that may arise when aggregate consumption exceeds capacity 
output. 

We will first study this economy under the additional assumption that 
output is demand determined euen when aggregate demand exceeds capacity, 
i.e., when consumers are never subject to quantity constraints. In order to 
derive necessary and sufficient conditions for the family’s optimum, we will 
apply the methods of Optimal Control [see Arrow and Kurz (1970)]. By (9) 
and (12), the (undiscounted) Hamiltonian becomes 

H = U(G) + v(&) + A,[ y, - C, - ntmt + lump-sum subsidies at t], (13) 
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where R is the co-state variable. Therefore, 

u’(q)=A,, x, = - o’(m,) + n,(p + n,] W, b) 

are necessary conditions for an optimum. 
For future: referenoe, notice that if a path (c,m) satisfies all the constraints, 

(M), and, im addition (c,m) converges to a steady state, then by the 
Sufficiency Theorem of Optimal Control [see Arrow and Kurz (197O):J the 
(c,@ path is an optimal solution.7 

Now, differentiating (14a) with respect to time and equating it to (146) we 
get* 

P=( -u’(c)ju”(c))[u’(m)/u’(c)-p-l7). (13 

We are now going to specify the market-equilibrium conditions. In the first 
place, output market equilibrium requires9 

y=c+g, (16) 

where g is government expenditure in goods and services, In order to sharply 
dflerentiate between c and g, we assume the latter is ‘wasteful’ consumption, 
it dues not enter into utility functions. Secondly, equilibrium in the money 
market requires 

riz=(p-!7)m, (17) 

where ~1 is the rate of expansion of money supply. 
Recalling section 2, excess demand, E, is naturally defined as 

E=y-jL 

We are now ready to start examining ‘the benchmark c%se’ where 

gxg, p= F, constants. 

(18) 

(1% b) 

Recalling (7), ( 15)-( 17) 

k = ( - u’(c)/u”(c))[o’(m)/u’(c) - p - I7], CW 

‘In fact, if the path of subsidies, y and Il are continuous and c is constrained to be right-hand 
wntinurrus. the km) path described in the text is a unique optimum. 

“From now on time subscripts will be deleted unless they are strictly necessary. 
‘In order to ident,ify’ individual with aggregate market variables we assume, wit1 out loss of 

rality, that there is only one household or family. 
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lil = (ji - ff)m, ri=6(j-c-$j). (201X c) 

Consequently, a (c,m, I7) path that satisfies (20) and converges to a steady 
state satisfies all the behavioral, optimal and market conditions under the 
assumption that individuals, and firms are endowed with perfect foresight 
(Jw. 

We will now characterize the convergent PF path assuming (the proof of 
the following is in the appendix) uniqueness, and that all variables concerge 
in a monotonic fashion. 

Notice, first that if (p +p) ~0 - an assumption that will be maintained 
throughout the analysis unless otherwise asserted - there exists, by (10) and 
(1 l), a unique steady state where 

ff-p, c+g=j, 
o’(m) 

u’(j -g) 
=p+p. (21a, b,c) 

Secondly, at any time t the only predetermined variable is m,, for, a:1 the 
others (i.e., c and 77) are allowed to ‘jump’, i.e., are allowed to 
instantaneously ‘jump’ to their equilibrium levels. Thus, if the solution is 
unique, If and c ought to be uniquely related to m. We indicate this 
relationship by 

I7 = n*(m), c = P(m). (22a, b) 

In particular, indicating steady-state levels of variables by an ‘upper’ bar, we 
get, recalling (21) 

P(fi) = ji, c”(6l) =j--g. (23a, b) 

Our objective is now to characterize the slope of the above functions. 
Consider the case where m>ti. Since variables converge to their steady- 

state values in a mocotonic fashion, it follows from (20b) and (23a) that 

&l*(m) > fi = ,1’7*(1ti) , (241 

showing that II* increases with m. 
Now using (23a) in (20a and b), and employing the just proved condition 

that I7 increases with m along and equilibrium path, we get the phase 
diagram depicted 1 n fig. 1. 

The arrowed curve shows the unique equilibrium relationship between c 
and m (assuming right-continuity of c with respect to time, see footnote 7). In 
the first place note that the region i.n fig. 1, where m <@i is one of excess 
capacity, and tha.t if the economy follows the arrowed curve to the steady 
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m 

Fig. 1. Determination of equilibrium (c,m) pairs when output is demand-determined. 

tak it will never transverse the excess demand region (where m >$I). It is 
then easy to convince oneself that the resulting path satisfies, in addition, the 
supply condition of section 2, namely that output is demand determined only 
when demand is less than or equal to capacity. Therefore, we have been 
able to characterize equilibrium when the economy starts at or below full 
equilibrium. 

The region to the right of fi in fig. 1 contradicts t.he postulate of section 2, 
use output would have to exceed j. However, by construction, we know 
it would give us the demand that would be generated if output was 

perfectly elastic. Thus, it gives us a possible measure of ‘notional demand’. If 
we adopt it, we would be saying that the relevant excess demand for firms is 
given by [c’~(wz) +g- fl, in which case the associated (ZI, m) path would 
exactly coincide with that implied by the arrowed curve in fig. 1; the c path 
however would have to be flat and equal to j. 

In what follows we will concentrate our attention on the excess-supply 
~giOl3. 

An interesting result that was advanced in section 2, is that along an 
equilibrium path there exists a positive association between the inflation rate 
and excess demand, th.e Phillips Curve; but it should also be clear that this 
Phillips-type relationship is, contrary to naive formulations, a function of 
policy and all the parameters of the system. 

It is easy to see that there is an (implicit) nominal interest rate, i, and that 
in equilibrium’o 

i = &+n)/U’(C). (25) 

trt shown by introducing an instantaneous-maturity bond yielding no liquidity or 
except for a nominal interest rate i. 
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Now, since by monotonicity and the fact that c is, in equilibrium, an 
increasing function of m, it follows that, at equilibrium 

i>O as m-ctii (26) 

which, by (20a) and (25) implies 

i-R>p as m < 61. (27) 

In words, in periods of slack capacity the ‘real’ ra.te of interest (i.e., i - l7) will 
be larger than in full equilibrium. This is similar to what is obtained in a 
standard IS-LM framework when the system is perturbed from full 
equilibrium by a fall of m. 

4. Effect of policy 

The model developed in the previous sections is a striking example where 
the ‘money matters’ hypothesis acquires full force. This can be seen in fig. 1; 
for, imagine that we start from an excess-supply situation, like when M= m,; 
then it is quite clear that a once-and-for-all unanticipated increase in money 
supply could immediately drive the system to full employment by shifting m 
to ti. As a matter of fact the first best could be attained by, in addition, 
announcing that the rate of expansion of money supply, CL, will be such that 

p= -p. 

For, by (21c), this would imply that at steady state 

u’(m) = 0 

yielding the optimal quantity of money. 

(29) 

Fiscal policy is also an effective but Pareto-inferior tool. Imagine, again, 
that we start at a point like m. in fig. 1, and that government expenditure, g, 
is set so as to cover the full-zmployment gap; thus 

i~~=J--c, for all t. (30) 

Therefore, by (2Oc), 

Ii,=0 for all t (31) 
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and, hen=, for convergence of m [see (20b)] 

Lf,=p for all t, implying 

mf =mQ for all t. 

Thus, by (X)a), (32), and (33), 

t!=( -u’(c)/u”(c))[o’(mo)/tb’(c)-p-ji] 

(32) 

(33) 

(34) 

which is a first-order differential equation in c. At steady state, 

i%/ik = u’(m&d(c) = p + ji > 0.  (35) 

Hence, convergence of c requires setting c at its steady-state level where, by, 
(3% 

v’(nt,) = (p + ji)w’( c). (36) 

Since, before the above policy is implemented, the steady-state values of m 
and c (rii and 2, respectively) also satisfy 

u’(?ii) = (p + ji)u’(E) (37) 

and, recalling fig. 1, fi > mo, the strict concavity of u( *) and u( -) imply that 
after the policy is implemented 

c, <: e. (33) 

Hence, the policy requires a once-and-for-all increase in g, which under our 
assumptions, implies that the level of utility will be permanently lower than 
the one attained with the monetary policy discussed at the outset of this 
section. 

Examples of the applicability of the present framework could be easily 
multiplied. For the sak.e of brevity, however, the rest cl? this section will be 
devoted to the discussion of a fundamental indeterminacy that arises if the 
monetary amhority aittempts to peg the nominal interest rate at a 
predetermined level. 

Sargent and Wallace (1975) studied this case in the context of an ad-hoc 
flexible prices model, and showed that a constant-interest-rate policy gives 

to indeterminacy of the price level. To see this in a simple way let us, 
momentarily, write the money market equilibrium as 
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where the left-hand side stands for the supply of (the log of) real monetary 
balances (A4 being the log of money supply), and the right-hand side is its 
demand; ?’ stands for the policy-determined interest rate. Clearly, siace P is 
free to jump and M is adjusted to keep i =c the value of P is undetermined. 

The previous example may give the impression that such indeterminacy is 
linked to the price flexibility assumption (or, perhaps, also to the ad-hoc 
nature of the model). As we now show, however, although in our model P is 
a predetermined variable, setting i=.i leads to a higher-order indeterminacy, 
namely, there exists a multiplicity of equilibrium rates of inflation consistent 
with the model. 

The proof is straightforward. By (25) 

i = u’( m)/u’( c) = T 

Thus, system (20) becomes 

(f= - u’(c)/u”(c)[L p - n-j, 

If=yy-c-g) 

and m is determined by (39). 
The phase diagram for this system is depicted in fig. 2. 

i-i =0 

(3% 

(40a) 

(4W 

I-p 
n 

Fig. 2. Equilibrium (cJ7) pairs with i=Z 

Clearly, any (co, III,) pair that lies OQ the arrowed curve is consistent with the 
assumption of equilibrium and convergence to a steady state; but since these 
variables are free to tr:tke on any value at t =Q, it follows that the system is 
fundamentally undetermined.’ ’ 

“The reader is invited to study the case where c(, =a& +3+:-p, r>O, i.e., where the rate of 
monetary expansion is an increasing funct$m of the difference between the actual and target 
interest rate. Surprisingly encugh, it is possrhle to extend (with no change) our recent rt:sults for 
an ad-hoc flexible price model [Calve (19Gb)]. according to which non-uniqueness prevails if 
u > 1; but if a c I uniqueness always holds. 



396 GA Caho, Staggered prices in a utiltty_maximizingfLMlework 

4.1. We will show that eq. (5b) can be seen as the limit of a discrete-time 
version of the mscfel (wblen the number of 
the length of the pleriod c:onverges to zero). 

Let 

price setters tends to infinity and 

probability that a price quotation 6k 
‘= will exlpire in the next period =1+ (A4 

where k is the length of a period, and S is a positive number. In order to 
show that this probabilit.y model converges to the one given in the text when 
k-+0, notice that [the probability that a price quotation will expire within the 
next h units of time (where h is a multiple of k) is 

Letting k-*0, the above expression is easily seen 

I -eeab, 

to converge to 

the p.d.f. of (A.31 is clearly (1) in the text. 
Let 

N = total (fixed) number of price setters, 

N&s) = number of price setters that set the price at time s, and 
have not been at’%e to change it before time t ( 2 s). 

(A4 

(A-3) 

If we assume, as in the text, that the price-change signals are mutually 
independent random varrables across price setters, it follows from the ‘law of 
large numbers’ that as Io+oo, the number of firms thrit receive the price- 
change sigEa1 at any given time, t, N(t, t), tends to 

N(t,s) =pN. (A4 

An implication of the above is that the number of price setters in any period 
tends to infinity together with N; thus, we can again apply the ‘law of large 
numbers’ to conclude that 

NC6 + h, s)+( 1 -- p)N(t, s) as R-* co. (A-5) 
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We define Y and TV as in the text. Thus 

Thus, by (AJ), (A.4), (AS) and (A.6), we have that 

(A.6) 

(A.7) 

Now, letting N-+cx, and k-4, we recover (5b). Q.E.D. 

A.2. We will show that in a neighborhood of the steady state of system (20), 
and given mo, there exists a unique path that converges to the steady state. 
This requires showing that the matrix associated with the linear 
approximation at the steady state has one negative root and two roots with 
positive real par&l2 

A= [;z,;c,;E]:= [;; -;‘;j. (A.8) 

Let 8,) i= 1,2,3, be the characteristic roots of A. As is well known [see 
Gantmacher (1956)], 

(A.9a) 

(A.9b) 

(A.9c) 

By (A.9a) and &SC), one root, say &, is real and negative, and t& and BJ 
have non-negative real parts; but, t>y (A.gb), we can also rule out the case 
where 8,) i = 2,3, have zero real parts. Q.E.D. 

Let h=(hl,h2, h3) be a characteristic vector associated with the negative 
root, el. Then the convergent solution (for the linear system) t,akes the 
following form: 

(A.lO) 

12Ftor a related problem see Calvo (1979), Fischer (1979). 



398 (;.,4. Calve, Staggered prices in a utility-maximizL1 ji-amewlork 

whcse q is chosen so that 

implying that the I’inear system converges in a monotonic way. Given our 
regularity conditions the latter is also a property of the non-linear system 
[see Coddington and Levinson (1955)], for some neighborhood of the steady 
state. 
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